
A Process Framework to Control the Time of Software Acceptance Testing

25

 A Process Framework to Control the Time of Software Acceptance Testing
Ahmed El-abbassy

El-shorouk Academy, Institute of Computers and Information Technology
P.O Box, El-shorouk, Cairo, Egypt

ahmed_elabbassy@yahoo.com

Hamdy Riad
El-shorouk Academy, Institute of Computers and Information Technology

P.O Box, El-shorouk, Cairo, Egypt
hamdy_riad@yahoo.com

Abstract:
Acceptance testing is the formal testing phase used to demonstrate that the

software performs as required. This is the final stage in the testing process before
the software is accepted for operational use.

Acceptance testing is the responsibility of the customer. Nevertheless, it has
important implications on the project, as its duration impacts the cost and the
payment schedule.

It is therefore important for both customer and software supplier to ensure the
thoroughness of the acceptance test while minimizing its duration.

The lack of coordination between acceptance testing and other testing phases
(unit testing, integration testing, and system testing), in addition to customer’s
wish to build confidence in the software, lead to a substantial prolongation of
acceptance testing duration.

In this paper, we discuss a practical approach to shorten the time of acceptance
testing, and we propose a framework for “good enough” testing derived from the
following basic ideas: Involving the customer early in the software testing
activities and consider the scope and results of the other testing activities when
planning for acceptance testing.

Combining acceptance testing with other testing activities will save time and
money.
Keywords: Software Engineering, Software Testing, and Acceptance testing.
1. Introduction

Testing plays an important role in today's software development life cycle.
During testing, we follow a systematic procedure to discover defects at various
stages of the life cycle.

Journal of the ACS , Vol. 1 , June 2007

26

Software testing is the most costly activity in a software project; roughly 40%
of the total cost is spent in software testing [1].

Software testing is a mission-critical quality assurance function. It is a
systematic process planned and integrated with the software development process.

Software testing activities are normally grouped into several phases [1] as
illustrated in figure (1):

Figure (1): Software testing lifecycle
The objectives of the different test phases are:

• Unit testing: The unit testing focuses on testing the smallest unit of
the system design, which is the module. It addresses the
correctness of the functions incorporated in a single module and its
dealing with error conditions.

• Integration testing: Integration testing involves testing the
interfaces between collections of modules, which have been
integrated into applications. The integration testing focuses on the
detection of interface errors by rigorously exercising these
interfaces.

• System testing: The aim of the system testing is to validate the
system requirements. It provides final assurance that the system
software meets all functional requirements. The system testing
includes the application functionality, performance, and
appropriateness, demonstrating that the system meets its
requirements within the defined constraints (e.g., performance,
security, recovery).

• Acceptance testing: Acceptance testing is the formal testing phase
used to demonstrate that the software performs as required. This is
the final stage in the testing process before the software is accepted
for operational use.

S ystem
specifica tion S ystem

design Detailed
design

Module and
unit code
and test

Sub-system
integ r a tion
test plan

S ystem
integ r a tion
test plan

Acceptance
test plan

Service Acceptance
test S ystem

integ r a tion test Sub-system
integ r a tion test

R equir ements
specifica tion

A Process Framework to Control the Time of Software Acceptance Testing

27

• The acceptance testing focuses on finding flaws in how the system
meets requirements, procedures, and usability from customer point
of view.

2. Software acceptance testing
2.1 Objectives

Acceptance testing is a critical stage of the testing process since it is managed
by the users to determine if the software meets the terms of the requirements
document [2].
2.2 Scope

This test consists of a series of test cases, with defined expected results, that
will validate the functionality of the system and ensure that the users can work with
the system as it has been designed.

Acceptance testing, which is sometimes combined with a simulated work
environment, should also ensure that the users can complete a day's work in a work day.

The primary characteristics evaluated during acceptance testing are:
• System functions and data.
• System security.
• Human factors.

Acceptance testing should demonstrate that the software meets the original
business objectives, satisfies the user requirements, and operates within the
constraints that were defined. Similarity between acceptance and system testing is
also apparent in the individual tests that make up acceptance testing (usability tests,
volume tests, stress tests, and so forth).

Unlike system testing, however, acceptance testing is the responsibility of the
customer.
2.3. Acceptance test definition principles

The following principles for the definition of test cases apply to acceptance test
strategy and design performed by the customer.

• Tests should be realistic as possible, preferably based on existing real
data rather than with simulated test data to make the definition of the
test set up, the test data and the test results easy and verifiable. Test
data is prepared during the development phase to represent sample real
data.

• Tests serve to verify that the system is performing according to the
defined requirements and specifications, not to introduce additional
features that were not originally in the scope.

• Test cases should be independent from each other. This allows the
execution of the second case even if the first did not complete correctly
and makes it easier to find the cause of erroneous result.

Journal of the ACS , Vol. 1 , June 2007

28

• The acceptance test suite is implemented in a way that allows the
execution of a specific single test, of a set of tests and of the complete
suite. Automatic test set-up, execution and result evaluation is of great
advantage for regression testing (e.g. when checking incident
resolutions or testing an upgrade) and should be aimed for.

• Acceptance testing is conducted using hardware and software of a test
platform and/or the operational environment.

2.4 Management of acceptance testing
• The formal acceptance test is conducted based on acceptance test cases

and acceptance test plan.
• Achieving Acceptance: When all test cases defined for the acceptance

test of a specific deliverable have been executed and their results have
been recorded a test report is compiled.

• The acceptance testing is considered to be completed upon satisfactory
performance of test cases and resolution of the major discrepancies of
system requirements.

3. Definition of the problem
Acceptance testing is a formal testing phase with an objective to give

confidence to customers on the software subject to delivery.
The acceptance testing is solely the responsibility of the customer [2].

Nevertheless, it has important implications on the project, as the duration of the
acceptance testing impacts the cost and the payment schedule [3].

It is therefore important to the customer and the software supplier to ensure the
thoroughness of acceptance tests while minimizing their duration.

However, acceptance testing is preceded by an extensive testing effort
organized in three test phases:

• Unit testing
• Integration testing
• Validation testing

These phases are considered by the software supplier as internal processes and
their results are quasi invisible to the customers [4].

In addition, there is always a lack of coordination between acceptance testing
and other testing phases, and it is clear that there are inevitably overlaps between
the tests performed in the different test phases.

According to practice, acceptance testing process degenerates, and never
completed in time.

A Process Framework to Control the Time of Software Acceptance Testing

29

Through acceptance testing, the customer tries to build confidence in the
software by testing everything again. This means a dramatic increase in
acceptance testing time.
4. A proposed process framework to control acceptance testing time

A process framework is a skeleton that specifies and coordinates the various
processes necessary to complete a complex task.

The aim of the proposed framework is to set principles and rules that provide
the basis for solving the complex issue of how to perform effective acceptance
testing in the project while minimizing its duration.

The proposed approach to improve acceptance testing time is derived from two
basic ideas:

• Involving the customer early in the software testing activities.
• Considering the scope and results of the other test phases when

planning for acceptance testing.
By Combining and coordinating acceptance testing with other testing activities,

we can save time and money.
Coordinating testing activities shall positively contribute to:

• Deliver the software faster
• Improve the user trust in software

The skeleton of the proposed testing process is illustrated in Figure (2)
The Skeleton of the Testing Process

Start
1. Prepare and sign-off test plans and detailed test procedures
2. Prepare test data for the different test phases
3. for each test phase (including acceptance testing)
4. do Run tests with client involvement
5. Compare results to test cases and calculate quality figures
6. while (Actual quality Figures are unsatisfactory)
7. do Perform corrective actions and update quality
figures

8. Sign-off test phase

9. Perform additional AD-Hoc testing by the client(*)
End
(*) AD-Hoc testing is an optional activity where the client may run a set of
random tests in order to be more confident in the software before staring the
operational use. The duration of this step should be fixed and agreed upon by
both the client and the software supplier.

Figure (2) the overall testing process

Journal of the ACS , Vol. 1 , June 2007

30

As illustrated in Figure (2) the basic element of the process model is the activity. An
activity is defined to accomplish a specific task (group of related tasks).
Each activity has entry conditions, exit conditions and responsibilities.
Specification Description
Entry Conditions to be met before task initiation
Exit Results produced
Responsibilities The role of the software supplier and the client

Activity #1: Prepare and sign-off test plans and detailed test procedures.
Specification Description
Entry - Inspected and approved:

 Requirements, Design, Code and changes.

Exit
- Inspected and approved test plans and procedures.
- Traceability between specifications and test cases.
- Number of tests per phase.
- Metrics used to assess the quality software testing.
- End of test phase fail/pass criteria.

Responsibilities - This task is the responsibility of the software supplier.
- This step shall be approved by the client.

Activity #2: Prepare test data.
Specification Description
Entry - Inspected and approved test plans and procedures.
Exit - Sample real and simulated data used for testing.
Responsibilities - This task is a joint responsibility of the software supplier

and the client.
Activity #3: Run tests with client involvement.

Specification Description
Entry - Inspected and approved test plans and procedures.

- End of test phase fail/pass criteria.
Exit - Test results recorded using test forms.
Responsibilities

- This task is the responsibility of the software supplier.
- Client shall be a witness, and shall sign the test result
forms.

Activity #4: Compare results to test cases and calculate quality figures.
Specification Description

Entry
- Inspected and approved test plans and procedures.
- End of test phase fail/pass criteria.
- Metrics to assess the quality of software testing.

Exit - The problems detected during software testing.
- Statistics on test results and measures of testing quality.

Responsibilities
- This activity is the responsibility of the software supplier.
- Results shall be made visible to client.
- Client shall approve the test result forms.

A Process Framework to Control the Time of Software Acceptance Testing

31

Activity #5: Perform corrective actions and update quality figures.
Specification Description
Entry - The problems detected during software testing.
Exit - Test results recorded using test forms

- Updated Statistics on test results and measures of testing quality.

Responsibilities
- This activity is the responsibility of the software supplier.
- Results shall be made visible to client.
- Client shall approve the test result forms.

Activity #6: Perform additional AD-Hoc testing by the client.
Specification Description
Entry - Test cases defined by the client

- Metrics to assess the quality of software testing.
Exit - The problems detected during software testing.

- Statistics on test results and measures of testing quality.
Responsibilities

- This activity is the responsibility of the client.
- Software supplier shall be a witness.
- Client and software supplier shall approve the results.

The proposed approach is implemented using widely accepted software
engineering concepts and techniques which are introduced in the following
sections:

• Traceability
• Visibility of software testing process.
• Testability of each requirement.
• The use of metrics to assess the quality of software testing.

4.1. Traceability [5, 6, and 7]
Requirements traceability is defined as the ability to describe and follow the life

of a requirement, in both forward and backward direction.
In the Requirements management process area, specific practice states,

"Maintain bidirectional traceability among the requirements and the project plans
and work products (i.e., from requirements to end products and from end product
back to requirements).

Such bidirectional traceability helps to determine that all source requirements
have been completely addressed and that all lower level requirements can be traced
to a valid source.

Traceability between functional requirements and test cases should be maintained.
Traceability can be achieved by using many techniques; the most popular

technique is traceability matrix.

Journal of the ACS , Vol. 1 , June 2007

32

A traceability matrix is a verification tool to trace a requirement throughout the
lifecycle. It should be developed because it provides visibility into completeness
of the quantitative definition and testability of each requirement.

The following table (1) shows an example of the relationships between the
Software Requirements Specification (SRS) and the Software Test Plan (TST). In
this case, Software Test Plan Requirement 1 (TST 1) is traced from Software
Requirements Specification Requirement 1 (SRS 1) while TST 2 is traced from
SRS 2 and SRS 3.

Table (1): a traceability matrix table
 TST 1 TST 2
SRS 1 X
SRS 2 X
SRS 3 X

4.2. Testability of each requirement [8, 9]
In order to minimize the time allocated for acceptance testing, planning for

software testing should have the following two main objectives:
• Ensuring the testability of each requirement.
• Distributing the test cases among the different test phases, in order to

avoid repeating same tests many times.
Software engineering techniques, to achieve such objectives are:

• Applying conveniently the functional testing techniques such as
boundary value analysis and equivalence class partitioning.

• The use of regression testing.
• The use of sample real data during software testing rather than with

simulated test data.
• Predicting the number of test cases required in order to test adequately

the developed software.
4.3. Visibility of software testing process [10]

Visibility means that the software process activities culminate in clear results so
that the progress of the process is externally visible.

To help the customers to maintain control, the supplier should provide a
transparent application development infrastructure.

To achieve visibility regarding software testing process, the following
provisions should take place:
4.3.1. Test logs and reports

The results of executing the tests comprised in the different test phases should
be documented in test logs and test reports.

A Process Framework to Control the Time of Software Acceptance Testing

33

The test logs shall document the execution of the tests. It provides a record of
relevant details about the execution of tests. For this purpose, a test checklist as
illustrated in Table (2) may be used. The execution of each round of testing will
lead to an update of the test checklist, and for each executed test, the test result is
noted (test successful or not). For a failed test, an incident report shall be issued
and its number will be recorded in the test checklist. As an example, an incident
report form is illustrated in Table (3).

The test report summarize the test checklists for any given test event at specific
points in time for the purpose of reporting status. It will show the testing event’s
progress, issues and recommendations and provides an overview of the incident
reports generated by the testing activity.

Table (2): Test Checklist Form
Test Checklist

Completed By: Effective Report Date:
System Name: Version No: Test Event:
Reviewed By: Review Date:
Test Case Id Test Date Actual Results Incident Log ID

Table (3): Incident Report Form
System
Name

Prepared By Date Prepared Incident Category Incident
Report No.

Incident Description
Title
Incident Definition
Appended Information (E.G. Configuration File,…)
Incident Resolution
Incident
Status

Date Responsible Remarks/Intermedia
te Corrections

Final
Correction

4.3.2. Incident categories

The problems detected during software testing should be categorized to reflect
their impact on the usability of the system, and their severity level.

Incident severity is a measure of the consequence of the defect.
An example of such classification is given in table (4)

Journal of the ACS , Vol. 1 , June 2007

34

Table (4): Incident Categories
Severity
level

Incident Consequences
1(Critical) A serious problem that makes further testing/work impossible

until it is resolved.
2(Serious) A significant error prevents the system from being operational but

other tests/work can continue.
3(Medium) An operational workaround has been provided for an error that

would prevent the system being operational.
4(Low) A minor issue that does not prevent the system from being

operational but may inconvenience the users.
4.3.3 Managing software testing activities
The management requirements for the different test phases comprise:

• A test plan should be developed.
• Test results should be recorded and approved.
• Measures of the test results including for example:

- The total number of tests.
- The number of failed tests.
- The number of successful tests.

Should be collected and analyzed, and confined to the customer.
• An agreement should be settled regarding release management. some

possible release management alternatives are:
- All known problems are resolved prior to release of the software.
- All known problems of Severity Levels 1, 2 and 3 are resolved prior to

releasing the software.
- All known severity levels 1 and 2 failures are resolved prior to release of the

software.
- All known severity level 1 failures are resolved prior to release of the

software.
4.4. The use of metrics to assess the quality software testing [11, 12, and 13]

The continuous monitoring of the testing process allows the establishment of an
adequate level of confidence for the release of software products and for the
quantification of software risks.

Monitoring of software testing process requires practical measurements for the
quantification of all software testing phases.

Software metrics can help improve the testing process by providing insight and
early visibility into the “real” status of the testing effort and helping to make
assessments as to whether progress, productivity and quality goals are being met.

A Process Framework to Control the Time of Software Acceptance Testing

35

Defect Distribution, Defect Density and Defect Type metrics allow the
quantification of the quality of the testing process.

Examples of such metrics are given in table (5)
Table (5): examples of software metrics

Test
metric

Definition Purpose How to calculate

Number
of
defects

The total number
of defects found in
a given test phase
that resulted in
software
modifications.

A meaningful way of
assessing the stability and
reliability of the software

Count the number of failed
tests

Defect
severity

The severity level of
a defect indicates the
potential business
impact for the end
user

Provides indications about
the quality of the product
under test. High-severity
defects mean low product
quality, and vice versa. At
the end of this phase, this
information is useful to
make the release decision
based on the number of
defects and their severity
levels.

Every defect has severity
levels attached to it.
Broadly, these are Critical,
Serious, Medium and Low.

Defect
Density

The number of
defects per 1,000
lines of code. Or
number of defects
divided by the total
number of tests

This metric indicates the
quality of the product
under test. It can provide
an indication concerning
the readiness for the
software code to be
released.

Ratio of the number of
defects found vs. the total
number of lines of code
(thousands) or the total
number of tests

Defect
severity
index

An index
representing the
average of the
severity of the
defects.

Provides a direct
measurement of the
quality of the product—
specifically, reliability,
fault tolerance and
stability.

Two measures are required
to compute the defect
severity index. A number is
assigned against each
severity level: 4 (Critical), 3
(Serious), 2 (Medium), 1
(Low). Multiply each
defect by its severity level
number and add the totals;
divide this by the total
number of defects to
determine the defect
severity index.

Journal of the ACS , Vol. 1 , June 2007

36

5. Integrating the proposed framework with the software life cycle.
Table 6 below, illustrates how the proposed framework is integrated with the

software development life cycle.
Table (6): Integration of the proposed framework with the software life cycle

Custom development life
cycle phase

Proposed actions
Analysis - The project shall perform and maintain bi-

directional traceability between high level user
requirements and the software requirements.

Design &
Implementation

- The project shall perform and maintain bi-
directional traceability between the software
requirements and the software design

- The project shall provide and maintain traceability
from software design to the software code.

- The project shall provide and maintain:
a. Software Test Plan(s).
b. Software Test Procedures.

- The project shall ensure that test plans and procedures
cover the product’s complete functionality

- The project shall distribute test cases among the
test phases, in order to reduce repeating same
tests many times.

- The project shall provide and maintain traceability
from the Software Test Procedures to the software
requirements.

Software testing - The project shall perform test cases as defined in
the software test procedures.

- The project shall provide visibility of the testing process
to the customer.

- The project shall provide and maintain
a- Software Test Logs
b. Software Test Reports.
c- The problems detected during software

testing shall be categorized to reflect their
severity level.

- The project shall provide and maintain
a. Statistics on the test results
b. Quantitative process data to measure the

quality of the software product and the
testing process.

- The project shall not proceed to the next testing
phase before achieving the required quality level
in terms of the agreed upon defect density and / or
defect severity index

A Process Framework to Control the Time of Software Acceptance Testing

37

6. Conclusions
This paper illustrates the following software engineering concepts:
- Traceability,
- Visibility,
- Software metrics
- Coordinating the activities of the different testing phases

These concepts can be translated into a set of concrete actions along the software
life cycle that helps improve the testing process by providing insight and early visibility
into the “real” status of the testing effort and helps to make assessments as to whether
progress, productivity and quality goals are being met. We believe that this proposed
framework shall contribute in shortening the acceptance testing time.

We expect to extend this approach to define more detailed relationships
between these concepts and the acceptance testing attributes such as time, number
of tests, and closure criteria.
References

[1] Ian Sommerville, Software Engineering Seventh Edition chapter 1, Pearson
Education Limited, 2004.

[2] Tom Mochal, Acceptance testing: The customer is the ultimate judge,
Builder.com, Published: 10/22/2001

[3] LESSONS LEARNED -- CURRENT PROBLEMS ,SPMN Software Development
Bulletin #3, Copyright 2005 Integrated Computer Engineering, Inc.

[4] Software Quality Assurance-Support of Formal Software Testing, S&MA,QD-
QE-012 REVISION C, Effective Date: September 24, 2004

[5] Requirements Tracing--An Overview, Liz Kean, Air Force Rome Laboratory,
Copyright 2005 by Carnegie Mellon University

[6] Office of the Chief Engineer, NASA Software Engineering Requirements, NPR
7150.2, Effective Date: September 27, 2004

[7] Linda Westfall, Bidirectional Requirements Traceability, The Westfall Team,
Copyright 2006

[8] Bach, J.S. (1997a) "Good enough testing for good enough software." Proceedings
of STAR 97 (Sixth International Conference on Software Testing, Analysis, and
Review, San Jose, CA., May 7, 1997, p. 659.

[9] BJ Rollison, Testing Techniques: Theory and Application. Software Test &
Performance Conference, November 2006, Boston.

[10] Rob Pirozzi, LogiGear Corporation, Addressing Five Core Questions
Surrounding Software Testing, LogiGear Corporation, Copyright 2006.

[11] Alfred Sorkowitz, Using Metrics to Improve Software Testing. Software Test
& Performance Conference, November 2006, Boston.

[12] Kalyana Rao Konda, Measuring Defect Removal Accurately, software test &
performance, by July 2005, p. 35.

[13] Stelios PANTELOPOULOS, SINGULAR S.A., Practical Measurements for
Reengineering the Software Testing Process, EuroSPI 2000.

