
Journal of the ACS, Vol. 7, May 2013

37

ICONIX Approach to MVC: Applying Robustness

Analysis on the Model–View–Controller Architecture
Ahmed El-Abbassy, Mohamed El-Zeweidy

ahmed_elabbassy@yahoo.com , melzeweidy@e-enjaz.org
Higher Institute of Computer Science &

Information Technology, El-Shorouk Academy

Abstract
ICONIX is a smart lightweight software process that is successfully used in both the
academic and commercial software community. ICONIX is a use case driven software
development methodology that is well suited to agile development. Due to its success, many
adaptations have been proposed to fit with different contexts such as service oriented,
embedded software and mobile development.
This paper investigates the application of ICONIX to the development of MVC (Model View
Controller) applications. MVC is an emerging architectural pattern with objective to
promote development of software that is flexible and easy to change. This is a quality
requirement for most of software products and especially for web based applications.
The paper discusses and presents a proposed adaptation to ICONIX in order to help to fit
with the MVC design. The proposed adaptation is illustrated by using a suitable example.

Key words:
Software Engineering, Software Development Process, MVC Architecture,
UML, Object modeling, Robustness Analysis

1. Introduction

The traditional Plan-driven methods (such as PSP, TSP and RUP) have been
challenged in recent years by the emergence of the Agile methods (such as
Extreme Programming, SCRUM and CRYSTAL) [1, 2]. Traditional
software development methodologies, usually designated as engineering
methodologies, are very bureaucratic, in what documentation and rigid
control mechanisms is concerned.
Agile methods afford more flexibility compared to traditional plan-driven
approaches, which lock in the project details early and are less able to adjust
to stakeholders’ evolving needs, market changes, and unplanned technology
challenges.

ICONIX Approach To MVC: Applying Robustness Analysis on the Model–View–Controller Architecture

38

However in Agile methodologies, there is lack of emphasis on necessary
designing and documentation.
In research work and literature, the Plan-driven methodologies are known as
"Heavy-weight" methodologies or "Traditional" methodologies while agile
methods are known as "light-weight" methodologies.

The ICONIX methodology is a medium-sized software development
process lying between the heavy weight and the light-weight Methodologies
[3].

The ICONIX process is use case driven and relatively small but it doesn’t
discard analysis and design like most of light-weigh methodologies do.
Moreover, it makes streamlined use of the Unified Modeling Language
(UML), while keeping a sharp focus on the traceability of user requirements
[4]. ICONIX offers a streamlined approach software development that
includes a minimal set of diagrams and techniques that a project team can
use to get from use cases to code quickly and efficiently [9]. Because the
process uses a minimal set of steps, it’s also well suited to agile
development, and can be used in tandem with test-driven development
(TDD) to help “plug the gaps” in the requirements[5].
A principal distinction of ICONIX is its use of robustness analysis, a
method for bridging the gap between analysis and design. This process
makes the use cases much easier to design, test and estimate [6, 7].

ICONIX can be placed into the middle, between RUP, Extreme
Programming (XP) and Agile Software Development. It takes the best of
above mentioned methodologies and minimizes development process.
ICONIX is based on UML diagrams like RUP, that’s why it is so suitable
for object-oriented development. ICONIX also supports iterative
development and copes well with rapid changes of scope, design,
requirements, and estimations. In ICONIX phases of analysis and design are
exceptionally important and strongly bounded [4].

For many years the plan-driven approach was adopted to software
development on Computer Studies and Software Engineering undergraduate
courses. Now in both the academic and commercial software community,

Journal of the ACS, Vol. 7, May 2013

39

the importance of an iterative and incremental approach to software
development is deemed recognized [8, 9].
The development process currently in use in many undergraduate computing
programs is ICONIX. ICONIX was designed with students and novice
developers in mind with the purpose of providing a lightweight approach
using only a subset of UML models. ICONIX provides sufficient structure,
and an emphasis on the need for analysis and design upfront, as well as
being scalable for the size of software development projects undertaken by
students in their final year [3].

Due to its success, many adaptations have been proposed to fit with
different contexts such as service oriented, embedded software and mobile
development.

This paper investigates the application of ICONIX to the development of
MVC (Model View Controller) applications. MVC is an emerging
architectural pattern with objective to promote development of software that
is flexible and easy to change. This is a quality requirement for most of
software products and especially for web based applications [10].

The MVC pattern classifies the objects in three categories: view, model and
controller objects. The classification criterion is given by the responsibilities
of the objects from each category [11]. Successful use of this pattern isolates
business logic from user interface considerations, resulting in an application
where it is easier to modify either the visual appearance of the application or
the underlying business logic without affecting the other [12].
This pattern decouples changes to how data are manipulated from how they
are displayed or stored, while unifying the code in each component. The use
of MVC generally leads to greater flexibility and modifiability. Since there
is a clearly defined separation between the components of a program,
problems in each domain can be solved independently. New views and
controllers can be easily added without affecting the rest of the application
[10].
The Model View Controller (MVC) architecture has been widely embraced
as an approach for developing Web-based applications that contain a server-
side programming component [13].

ICONIX Approach To MVC: Applying Robustness Analysis on the Model–View–Controller Architecture

40

This paper discusses and presents a proposed adaptation to ICONIX in
order to help to fit with the MVC design. The proposed adaptation is
illustrated by using a suitable example.

The rest of this work is structured as follows: Section 2 presents an
overview of ICONIX process and section 3 presents an overview of MVC
architectural pattern. In sections 4 the proposed adaptation is discussed and
an illustrative example is presented. Section 5 describes the conclusion on
this topic.

Journal of the ACS, Vol. 7, May 2013

41

2. Overview of the ICONIX Process

ICONIX is a medium-sized software development methodology whose
analysis and design strength is based on UML. It is said to lie somewhere
between RUP and XP. ICONIX offers a streamlined approach software
development that includes a minimal set of diagrams and techniques that a
project team can use to get from use cases to code quickly and efficiently
[3].

Figure 1 illustrates the overall framework of the ICONIX process

Figure 1: ICONIX Process

ICONIX Approach To MVC: Applying Robustness Analysis on the Model–View–Controller Architecture

42

Following the ICONIX methodology, one has to identify the main (“real”)
problem domain entities, draw screen mockups and express the functionality
of the application in terms of use cases using the drawn mockups and
domain entities as vocabulary. The identified use cases should cover all
required functionally. This ensures that the development process prioritizes
a user-centered approach by expressing the functional requirements of the
user in terms of a set of use cases that the final application will be tested
against during system evaluation.
Based on the textual use case description, as well as the initial domain
model, and with the purpose of refining the use case text and enriching the
domain model with class attributes, a set of robustness diagrams are
constructed bridging the gap between analysis and design.
Robustness analysis plays a central role in the ICONIX methodology.
Robustness analysis allows a feasibility and sanity check of the analysis so
far, which may also identify missing entities in the domain model (i.e.,
object discovery) and thus reassures that design is based on a solid set of
participating classes. On a robustness diagram, actors are represented by
stick-persons, application screen by boundary objects, system processing by
controllers and domain classes by entity objects.
The next phase of the ICONIX methodology proceeds to the detailed design
level of the application by constructing a sequence diagram for each
robustness diagram (and thus for each use case).
Sequence diagrams contain all actors, screens and domain classes from the
respective robustness diagrams and allocate behavior to them by translating
each control object to one or more messages exchanged between actors,
screens and domain classes.
This process results in assigning methods to classes in the domain model
and eventually transforms the initial domain model (which was revised in
the robustness analysis phase and extended with class attributes) to a
detailed design level class diagram that can drive the generation of the
application coding [3, 5].

Journal of the ACS, Vol. 7, May 2013

43

The approach in a Nutshell [14,15]
1. Step1

1.1 Identify your real-world objects and the generalization + aggregation
relationships between them (Domain model static diagrams)
1.2 (Possibly perform a rapid prototyping of the proposed system)
1.3 Identify your use cases (Use Case Diagrams)
1.4 Organize the use cases into package diagrams
1.5 Allocate functional requirements to use cases and domain objects

Milestone 1: Requirements Review
2. Step2

2.1 Write a description of the use cases, both "mainstream" + alternative
courses
2.2 Perform Robustness Analysis:

- identify objects which accomplished a stated scenario
- update the domain model with this objects
- Finish the analysis class diagram

Milestone 2: Preliminary Design Review
3. Step3

3.1 Allocate behavior. For each use case: (Sequence diagrams)
3.2 identify the messages between different objects
3.3 (if needed collaboration diagrams to show key transactions between
objects)
3.4 (state diagrams to show the real-time behavior)
3.5 Finish the static model with the detailed design (Detailed design static
diagrams)

Milestone 3: Detailed Design Review
4. Step4

4.1 (If needed produce deployment + component diagrams to help in the
implementation phase)
4.2 Write/generate code
4.3 Perform unit + integration testing
4.4 Perform system + user-acceptance testing

Milestone 4: Delivery

ICONIX Approach To MVC: Applying Robustness Analysis on the Model–View–Controller Architecture

44

3. The MVC Architectural Patten

In general, the software is designed by applying an architectural pattern.
This describes the kind of components, their relations, their constraints, the
design and the composition rules of the components [11].
One of the most common software architecture design pattern is the Model
View Controller (MVC) paradigm [16].
According to the MVC software pattern, the application should have at least
three components as illustrated in figure 2. The Model component includes
the core of application data and logic domain functionality. The View
obtains data from the Model and displays them to the user. The Controller
receives and interprets input into the requirements for the Model or the
View. One of the first uses of the MVC software pattern in object oriented
software applications was in the SmallTalk programming language [14].

Figure 2: MVC Software Pattern

The architectural pattern has wide acceptance in the software development
of GUI applications. GUI models the interface as a composition of
interacting objects that present the internal state to the user [17]. MVC
appears popular because it directly applies an object-oriented approach to
separate the components of an interactive system. Specifically, as the name

Journal of the ACS, Vol. 7, May 2013

45

implies, the components are the model, the view and the controller.
Separation of the components allows for independent development, testing
and maintenance of each component [16].

Figure 3 illustrates an MVC architecture created using Java-based
technologies. In this architecture, user HTTP requests are routed through a
controller, which is typically implemented as a servlet [13].

Figure 3 MVC using Java-based technologies

This approach effectively separates the program code and HTML code and
allows the programmers and designers to work far more independently. The
programmers can write the controller and model code without interleaving
the HTML, which is found in the view. Similarly, the view contains far less
programming code than in non-MVC approaches. Although the JSP
Expression language and tag libraries are a form of coding, they are less
intrusive than adding scriptlets and directives to a JSP page [13].

The MVC basic idea is to minimize the coupling among objects in a system
by aligning them with a specific set of responsibilities in the area of the
persistent data and associated rules (Model), presentation (View), and the
application logic (Controller) [18].
The solution suggested by the model-view-controller pattern is to localize
the responsibilities of

- hosting business logic and data,
- presenting information to users and

ICONIX Approach To MVC: Applying Robustness Analysis on the Model–View–Controller Architecture

46

- reacting to user events
on separate, loosely coupled, components called the model, the view and the
controller. This is illustrated in Figure 4.

Figure 4 Responsibility allocations in the MVC pattern

Major Benefits and Potential Problems
Benefits

- Simpler maintenance.
- Supports concurrent modular development with clearly defined
developer roles (view designers, front-end developer, back-end developer,
...).
- Simpler testing.
- Reusable business logic and presentation layer components.
- Supports multiple synchronized views on same data.
- Business logic and presentation/controller may be hosted on different
nodes (machines).

Potential problems
- In distributed implementations the communication overheads may lead
to performance problems.
- Both, the controller and the view are dependent on the model API which
may reduce re-usability of view and controller elements.

Journal of the ACS, Vol. 7, May 2013

47

4. The Proposed Adaptation
4.1 Robustness Analysis:
Ivar Jacobson introduced the concept of robustness analysis to the world of
OO in 1991 [4]. It is an intermediate level of design, between Use Cases and
the software design level. Robustness analysis acts as a mediator to bridge
the gap between modeling use case diagram and sequence diagram [17].
As a non-core element of UML, robustness analysis bridges the gap
between analysis and design in software process, and it is a key technique to
realize transformation and trace ability of models in ICONIX software
process [19]

By analyzing each use case, robustness analysis identifies a set of objects
that will participate in the use case, and classifies them into one of three
stereotypes as shown in Figure 5:

(1) Boundary objects, which the actors use when communicating with
the system

(2) Entity objects, which are usually objects from the domain model
(3) Control objects, which server as the “glue” between boundary

objects and entity objects

Figure 5 Robustness diagram Stereotype symbols

Entity objects represent data stored in a database. Boundary objects are
deemed user interfaces and triggered by users to communicate with control
objects, which capture application logics and act as bridges between
boundary objects and entity objects.
As illustrated in figure 6, the interaction rules among these objects can be
summarized as follows:
• Actors can only communicate with boundary objects.
• Boundary objects can only communicate with control objects and actors.
• Entity objects can only communicate with control objects.

ICONIX Approach To MVC: Applying Robustness Analysis on the Model–View–Controller Architecture

48

• Control objects can communicate with boundary objects, entity objects and
the other control objects, but not with actors.

Figure 6 Robustness diagram interaction rules

When applying robustness analysis for Web-based systems we find:

(1) Boundary objects are the objects that the users will use to interact with

the system. These are elements that compose a web page, such as
hypertext, forms, menus, buttons, and so on.

(2) Entity objects often map to the database tables and elements in legacy
systems. They represent resources required by use case execution.

(3) Control objects embody mostly application logic. They serve as
mediator between the users and the stored data. This is where one
captures the frequently changing business rules and policies.

The principles are the same as those underlying the component-based
reference model for web-based systems presented in [20]:

Presentation component ~ Boundary object
Control component ~ Control object
Resource component ~ Entity object

Journal of the ACS, Vol. 7, May 2013

49

4.2 Role of Robustness Analysis in ICONIX Methodology
Robustness analysis plays several essential roles within the ICONIX
process.
Robustness analysis fills the role of preliminary design, by closing the gap
between analysis and detailed design as illustrated in figure 7. Robustness
analysis is really preliminary design, during this phase, you start making
some preliminary assumptions about your design, and you start to think
about the technical architecture and to think through the various possible
design strategies. So it’s part analysis and part design.

Figure 7 Role of Robustness analysis within the ICONIX process

A robustness diagram shows conceptual relationships between objects. Because it’s an
"object drawing" of the use case text, it occupies a curious space halfway between analysis
and design. Nevertheless, mastering robustness analysis is the key to creating rigorous
designs from clear, unambiguous use cases.

ICONIX Approach To MVC: Applying Robustness Analysis on the Model–View–Controller Architecture

50

4.3 Robustness Analysis and Model-View-Controller:

MVC can be best described visually, using robustness analysis. As illustrated in figure 8,
we can see how robustness diagram objects are related to MVC paradigm. MVC have one-
to-one mapping with the objects, derived from robustness analysis [21]:

• Entity object maps to Model object,
• Boundary object maps to View object, and
• Controller is same in both.

Figure 8 Robustness analysis and MVC objects relationship

This means, when we are doing Robustness Analysis, we can use Model-View-Controller
objects in place of Entity-Boundary-Controller objects.

Journal of the ACS, Vol. 7, May 2013

51

4.4 The proposed adaptation

It is clear from the analysis of models that robustness diagram is the most
suitable model to represent MVC programs.
So we propose to use the robustness model in the detailed design phase for
MVC systems.
By this way robustness diagrams will be used in both the preliminary design
and the detailed design phases.
With this proposed extension to the robustness analysis role, the overall
framework of the ICONIX process can be revisited as shown in figure 9

Figure 9: The ICONIX process revisited

Robustness analysis will fill the role of preliminary design and detailed
design as shown in figure 10

Figure 10: New Role of Robustness analysis within the ICONIX process

ICONIX Approach To MVC: Applying Robustness Analysis on the Model–View–Controller Architecture

52

4.5 Example

In the following example we present how robustness analysis may be used
in the detailed design.
To create the sketch I merely followed the logic of the use case and applied
the following heuristics were used to apply robustness analysis in the
detailed design:

• Add a boundary element for each major user interface element such
as a screen or a report.

• Add a controller to manage the overall process of the scenario being
modeled.

• Add a controller for each business rule.
• Add a controller for activities that involve several other elements.
• Add an entity for each business concept.
• Add a use case whenever one is included in the scenario

Example: Robustness Analysis of student registration use case
Figure 11 illustrates the detailed design of the student registration use case.

Figure 11: Student registration detailed design using robustness diagram

Journal of the ACS, Vol. 7, May 2013

53

Figure 12 illustrates the object discovery during the detailed design
corresponding to the student registration use case

Figure 12: Object discovery during the detailed design process

ICONIX Approach To MVC: Applying Robustness Analysis on the Model–View–Controller Architecture

54

4.6 Comparative analysis and evaluation
In this section we discuss the importance of robustness analysis with respect
to MVC design pattern and the ICONIX modeling process. We also provide
a comparative analysis between robustness diagrams and sequence diagram
which are the main behavioral models used during ICONIX design phase.

4.6.1 Robustness Analysis and Model View Controller design Pattern
Robustness diagram is the most simple and important Model-View-
Controller (MVC) diagram in the software business.
Model-View-Controller can be best described visually, using robustness
analysis: they have one-to-one mapping with the objects and the same rules
are applied to these objects too. Robustness analysis model helps to partition
objects within a Model-View-Controller paradigm and we can use Model-
View-Controller objects in place of Entity-Boundary-Controller objects.
Robustness diagram will also be good to discover any missing object and
overview of the MVC communication.
A robustness Diagram succinctly tells us how to implement an MVC design
in code. As illustrated in figure 13, this diagram states the following
MVC pattern rules:
- Users interact with View objects.
- View objects and Controller objects talk to each other.
- Different Controller objects talk to each other.
- Controller objects talk to Model objects.
- No other forms of communication between objects are allowed.

Figure 13: MVC allowed communication

If we understand these rules and commit to them, MVC concept becomes
very simple.

Journal of the ACS, Vol. 7, May 2013

55

4.6.2 Robustness Analysis and ICONIX modeling process
Robustness analysis streamlines the ICONIX modeling process, and delivers
the following added values:
- Use the DDT (Design Driven Testing) process.
 We have the flexibility to test against Requirements, against Controllers
("logical functions") and to do true unit testing at the Sequence message
level. All of these abstraction levels should be verified by our testing.
- Generation of robustness diagrams from use cases:
Having the Requirements on the Robustness diagram helps us to make sure
we haven't forgotten any Requirements as we analyze the use case.
- Generation of sequence diagram structures from robustness diagrams
In addition to being useful during Requirements definition and
Analysis/Conceptual Design phases of a project, the Robustness model
delivers value when transitioning from the Analysis phase to Detailed
Design, by generating skeleton Sequence diagrams from Robustness
Diagrams. All Boundary, controller, and Entity objects are brought from the
Robustness diagram onto the Sequence diagram. Once the Sequence
diagram is completed, we can generate unit tests from the messages on the
Sequence Diagram. Note that "controllers" on Robustness diagrams tend to
reflect a slightly higher abstraction level than Sequence messages; that is, a
controller may be implemented as multiple messages on a Sequence
diagram.
- Transformation of robustness control elements to test diagrams:
By analyzing our use case using the Robustness Analysis technique, we've
added a lot of information to the model that can be used to drive the testing
of the application. We can generate test cases for each "controller" on the
Robustness diagram. The "controller tests" are performed by the
development team while an independent QA team might own the
"requirement tests". We can easily generate test plan reports. So driving our
testing activity from the model is very straightforward.

4.6.3 Robustness Diagrams versus Sequence Diagrams
A robustness diagram is an interaction diagram that shows similar
information to sequence diagrams but its primary focus is on object
relationships.
a) Robustness Sequence and Sequence diagram Similarities
- Semantically equivalent

ICONIX Approach To MVC: Applying Robustness Analysis on the Model–View–Controller Architecture

56

- Can convert one diagram to the other without losing any information
- Model the dynamic aspects of a use-case scenario
- Sequence diagrams and robustness diagrams are semantically equivalent:

Both sequence and robustness diagrams allow you to capture semantics of
the use-case flow of events. They help identify objects, classes,
interactions, and responsibilities, as well as validate the architecture.

- As a result, you can take a diagram in one form and convert it to the other
without any loss of information.

b) Robustness Sequence and Sequence diagram differences
- Robustness diagrams emphasize the structural communication of objects

and show a clearer picture of the pattern of relationships and control that
exist among the objects participating in a use case. Robustness diagrams
also show more structural information, such as the relationships among
objects. Robustness diagrams are better for understanding all the effects of
a given object and for procedural design.

- Sequence diagrams show the explicit sequence of messages and are better
for real-time specifications and complex scenarios. A sequence diagram also
includes chronological sequences but does not include object relationships.
On sequence diagrams, the time dimension is easier to read, the operations
and parameters are easier to present, and the larger number of objects are
easier to manage than in robustness diagrams.

Journal of the ACS, Vol. 7, May 2013

57

5. Conclusion
This paper investigated the application of ICONIX, a use case driven,
object-oriented analysis and design methodology that makes streamlined use
of UML, for the development of MVC applications.
The study concluded that by extending the role of robustness analysis to
cover both the preliminary and the detailed design phases, the adaptation of
the ICONIX methodology to MVC is easily recognized.

6. References

[1] Sutap Chatterjee, (2010), "The Waterfall That Won’t Go Away", ACM

SIGSOFT Software Engineering Notes, Volume 35 Number 1
[2] Li Jiang, and Armin Eberlein, (2008), "Towards A Framework for

Understanding the Relationships between Classical Software
Engineering and Agile Methodologies", APSO’08, Leipzig, Germany.

[3] DOUG ROSENBERG, 2010, ICONIX PROCESS ROADMAPS,
Fingerpress LTD Londen

[4] Evanthia Faliagka, Petros Karkoulias, Maria Rigou2, Spiros Sirmakessis,
Giannis Tzimas, and Athanasios Tsakalidis, (2012), Applying an OO
Modeling Methodology for the Design, Implementation and Testing of a
Smart Phone, Received: November 07, 2011 / Accepted: November 18,
2011 / Published: February 25, 2012, Computer Technology and
Application 3 (2012) 105-113, David Publishing.

[5] Doug Rosenberg, Matt Stephens and Mark Collins-Cope , (2005), Agile
Development with ICONIX Process, Methods & Tools, Global
knowledge source for software development professionals, ISSN 1661-
402X, Summer 2005 (Volume 13 - number 2)

[6] Bhushan Thakare, Bhushan Bhokse, Laxmi Thakare , (2012), Deriving
Best Practices from Development Methodology Base (Part 1),
International Journal of Engineering Research & Technology (IJERT),
ISSN: 2278-0181, Vol. 1 Issue 6, August – 2012.

[7] Bhushan Thakare, Bhushan Bhokse, Laxmi Thakare , (2012), Deriving
Best Practices from Development Methodology Base (Part 1),
International Journal of Engineering Research & Technology (IJERT),
ISSN: 2278-0181, Vol. 1 Issue 6, August – 2012

ICONIX Approach To MVC: Applying Robustness Analysis on the Model–View–Controller Architecture

58

[8] Bernard Chalk, Karen Fraser, (2005), A Survey on the teaching of
introductory programming in Higher Education, ICS Higher Education
Academy Website in September 2005.

[9] Mark Cranshaw1, John Flackett, (2006), Using process miniatures as an
aid to teaching software development in Java, The 10th Java & the
Internet in the Computing Curriculum Conference (JICC 10), held at
GC108, North Campus, London Metropolitan University on Friday 3rd
February 2006.

 [10] Banani Roy and T.C. Nicholas Graham, (2008), Methods for
Evaluating Software Architecture: A Survey, Technical Report No.
2008-545, School of Computing, Queen's University at Kingston,
Ontario, Canada

[11] Alexandru Florin Pavel, Crengu¸ta M˘ad˘alina Bogdan , (2008),
Object-Oriented Construction of Portals Using AJAX, Int. J. of
Computers, Communications & Control, ISSN 1841-9836, E-ISSN
1841-9844, Vol. III (2008), Suppl. issue: Proceedings of ICCCC 2008,
pp. 442-447

[12] Yanfang Wang, Chunyan Guo, Lei Song , (2009), Architecture of E-
Commerce Systems Based on J2EE and MVC Pattern, 2009
International Conference on Management of e-Commerce and e-
Government

[13] Nick Heidke, Joline Morrison, and Mike Morrison , (2008), Assessing
the Effectiveness of the Model View Controller Architecture for
Creating Web Applications,

[14] D. Rosenberg, M. Stephens, M. Collins-Cope, (2005), Agile
Development with ICONIX Process: People, Process, and Pragmatism,
Apress, 2005.

[15] Morteza Poyan rad, Homayon Motameni, (2011), Improving Web
Engineering and Agile Iconix Process, Middle East Journal of
Scientific Research 8(1): 274-281, 2011, IDOSI Publications, 2011.

[16] Thuan Pham, (2010), Model-View-Controller Design, University of
Washington – Bothell, CSS 555 - Evaluating Software Design, Mark
Kochanski, May 16, 2010

[17] Wu J-H, Shin S-S, Chien J-L, Chao WS, Hsieh M-C (2007) An
Extended MDA Method for User Interface Modeling and
Transformation. In Proceedings of the Fifteenth European Conference

Journal of the ACS, Vol. 7, May 2013

59

on Information Systems (Österle H, Schelp J, Winter R eds.), 1632-
1642, University of St. Gallen, St. Gallen.

[18] Khawar Zaman Ahmed, Cary E. Umrysh, 2001, Developing Enterprise
Java Applications with J2EE and UML, Addison-Wesley Pub Co;
ISBN: 0201738295; 1st edition(December 15, 2001)

[19] Yang, Deren, Su, Fulin ; Zhou, Tao , (2012) , Applying robustness
analysis to MDA software paradigm, This paper appears in:
Instrumentation & Measurement, Sensor Network and Automation
(IMSNA), 2012 International Symposium on Date of Conference: 25-
28 Aug. 2012, Volume: 2, Page(s): 419 - 422

[20] Philippe Dugerdil, Javier Belmonte, and David Kony, (2009), Using
Robustness Diagrams to Help With Software Understanding: an
Eclipse Plug-in, Int.J. of Software Engineering, IJSE Vol.2 No.3
December 2009

[21] Shams Mukhtar, (2004), "Applying Robustness Analysis on the
Model-View-Controller (MVC) Architecture in ASP.NET Framework,
using UML", www.codeproject.com August 2004

