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Abstract 

Simulated Annealing is one of the most important meta-heuristics or general-

purpose  algorithms of combinatorial optimization, due to its convergence towards 

high quality solutions. However, it is associated with a high computational cost 

and difficulties related to the parameters settings. Therefore the algorithm’s 

convergence speed has been the subject of a largenumber of research works.  

Settings the parametersof the algorithm determines the generation of the new 

solution. One of the most important features in simulated annealing is the choice of 

the annealing schedule, and many attempts have been made to derive or suggest 

good schedulesas an optimization technique. The precise rate of cooling is an 

essential part of Simulated Annealing as it determines its performance. In this 

paper, we make a comparative study of the performance of simulated annealing 

using the most important annealing strategies for selecting the initial value of 

temperature, the cooling schedule, the number of iterations to be performed, and 

the stopping criterion. The analytical results among different annealing schedules 

are studied, analyzed and compared. The results are encouraging for application 

purposes. 

 

Keywords: Annealing schedule, simulated annealing, fast annealing, simulated 

quenching, local search, global search.  

 

1- Introduction 

Simulated Annealing (SA) is one of the emergent calculation algorithms that solves 

optimization problems, and is an effective technique for solving combination 

optimization problems[10, 14, 22, 23]. SA is an algorithm that simulates the 

physical evolution of a solid from a high temperature state until it reaches a thermal 

equilibrium state. SA searches randomly around the neighborhood of a present 

searching point. The next searching point can be accepted even when the fitness 

value of the next point is worse than that of the present. Given an initial state, the 
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SA algorithm repeats these steps until the optimization state is finally reached. 

Therefore, it can derive the global solution. 

   SA is based on an analogy with the homonymous thermodynamical process. For 

slowly cooled thermodynamical systems (e.g., metals), nature is able to find the 

minimum state of energy, while the system may end in an amorphous state of 

higher energy if it is cooled quickly. This principle is expressed by the Boltzmann 

probability distribution:                      

         P(S) ~ exp (- S / kT)                                                                                  → (1) 

The energy of a solution in thermal equilibrium at a given temperature T is 

probabilistically distributed among all different states S. The system may switch to 

a new energy state with probability P, irrespective of whether it is higher or lower. 

Therefore, nature‘s minimization strategy is to allow the system sometimes to go 

uphill as well as downhill, so that it has a chance to escape from a local energy 

minimum in favor of finding a better, more global minimum. However, the lower 

the temperature, the less likely is a significant uphill step[24]. 

    The principle of annealing in optimization, is transferred by introducing a 

control parameter, analogue of temperature, and an annealing cooling schedule that 

describes its gradual reduction. Assuming a large enough initial temperature and a 

proper schedule, SA slowly converges to the globally optimal solution[13, 24]. 

    The stochastic simulated annealing (SSA) combines the gradient descent 

technique which is a probabilistic hill-climbing algorithm with a random process to 

find the global minimum for its energy function E[9]. Simulated annealing models 

the degrees of freedom as a collection of atoms slowly being cooled into their 

stable states with the temperature T as the controlling parameter. The energy 

surface defined as E(s) for a particle state s is a Boltzmann distribution function 

that allows changes in s to increase E, thus providing the network with a 

mechanism to escape from being trapped in a local minimum[2]. This is made 

possible since changes to s which decrease E are always accepted, whereas a move 

which causes an increase ∆E will be taken with the Boltzmann probability: 

Pr{uphill move} = exp(-∆ E / T). 

    SA algorithm has basically three important processes: generation, acceptance 

criterion, and cooling. SA searches a solution with one point. The process of 

generation creates the next searching point from the present point. The acceptance 

criterion then judges the transfer of the searching point from the present point to 

the generated point. This acceptance criterion consists of the temperature and the 

function value. Usually, the Metropolis standard is used as the acceptance 

criterion[12, 28]. 
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Metropolis criterion: After every challenge from a configuration u to another 

configuration v, we compute the cost function variation ∆g = g(v) – g(u). The 

transformation is accepted with a probability: 

      P ( u, v ) = exp ( - ∆g / T)                                                                           → ( 2 ) 

When ∆g <= 0, then exp ( - ∆g / T ) >= 1 and  the new configuration is accepted 

with a probability P( v ) = 1. 

If ∆g > 0, we compare P ( u, v ) with a random number r in the interval [0,1[ : 

 If r < P ( u, v ) then the new configuration is accepted. 

 Else the new configuration  is rejected. 

In this case, the system tries to find another configuration. If it is impossible, the 

last configuration is accepted and the search is stopped when the stopping criterion 

is reached[16]. 

         However, SA requires huge computational cost. Specifically, SA takes much 

time finding the optimum solution in continuous problems like when performing 

SA in parallel and when performing SA with other optimization algorithms.  

     The remainder of this paper is organized as follows: In section 2, the SA 

algorithm is illustrated. Section 3 shows the characteristics of the SA algorithm. In 

section 4, the Annealing Schedule is studied, analyzed and discussed.  The 

simulation results are shown in section 5. Finally section 6 concludes this paper.  

2- Simulated  Annealing algorithm 

The simulated annealing (SA) technique is the most powerful one of the stochastic 

algorithms. The SA algorithm is based on the concept of attaining the lowest 

energy state through slow cooling (e.g., annealing of metals) and is currently used 

in molecular modeling. Much of its success is due to random sampling of the 

parameter space, based on the probabilistic Monte Carlo method[1]. 

    SA algorithm is a general purpose optimization technique. It has been derived 

from the concept of metallurgy in which we have to crystallize a liquid at a 

required temperature. In this process the liquid are initially at a high temperature 

and the molecules are free to move. As the temperature goes down, the movement 

of the molecules is restricted and the liquid begins to solidify. If the liquid is cooled 

slowly enough, it forms a crystallized structure. This structure is in the minimum 

energy state. If the liquid is cooled down rapidly, it forms a solid which is  not in 

the minimum energy state. Thus the main idea in simulated annealing is to cool the 

liquid in a controlled matter and then to rearrange the molecules if the desired 

output is not obtained. This rearrangement of molecules takes place based on the 

objective function which evaluates the energy of the molecules in the 

corresponding iterative algorithm[5]. SA aims to achieve global optimum by 
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slowly converging to a final solution, making downward moves hoping to reach a 

global optimum solution. Given a solution Ss, we select the neighbor solution Sn 

and the difference is calculated using the objective function 

         ∆ f = f (Sn)  – f (Ss)                                                                                 →  ( 3 ) 

If the function improves the value, i.e., if (∆ f  < 0) , then we replace the current 

solution with the new one. Otherwise, i.e., if (∆ f ≥ 0 ), then the new solution is 

accepted with a probability factor of  p(∆ f ) = exp ( - ∆ f / T ), where T is the 

temperature which is the controlling parameter. The procedure is repeated until the 

terminating condition is met[5].     

    The stochastic character of the SA algorithm provides one of its main 

advantages: it is no longer necessary to make choices concerning the starting point. 

In fact, the initial set of parameters is generated randomly in order to avoid any 

bias in the choice of the subsequent search trajectory. On the other hand, since the 

sampling of the parameter space must be adequate, the time necessary to complete 

a single SA run is longer than that required by a single run of a deterministic 

algorithm[1]. 

  The algorithm is explained below: 

Start with randomized states throughout the network, si(1), and select a high initial 

―temperature‖ T(1). Next, choose a node i randomly. Suppose its state is si = +1. 

Calculate the system energy in this configuration, Ea; next recalculate the energy, 

Eb, for a candidate new state si = −1. If this candidate state has a lower energy, 

accept this change in state. If however the energy is higher, accept this change with 

a probability equal to 

  ,                                                                            → ( 4 ) 

where ΔEab = Eb−Ea. This occasional acceptance of a state that is energetically less 

favorable is crucial to the success of simulated annealing, and is a marked 

distinction from the naive gradient descent and the greedy approach. The key 

benefit is that it allows the system to jump out of unacceptable local energy minima. 

For example, at very high temperatures, every configuration has a Boltzmann 

factor   ≈ e
0
 roughly equal. After normalization by the partition function, 

then, every configuration is roughly equally likely. This implies every node is 

equally likely to be in either of its two states. 

    The algorithm continues polling (selecting and testing) the nodes randomly 

several times and setting their states in this way. Next, the algorithm lowers the 

temperature and repeats the polling. Now, according to Equation (4), there will be a 

slightly smaller probability that a candidate higher energy state will be accepted. 

Next the algorithm polls all the nodes until each node has been visited several 

times. Then the temperature is lowered further, the polling repeated, and so forth. 
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At very low temperatures, the probability that an energetically less favorable state 

will be accepted is small, and thus the search becomes more like a greedy 

algorithm. Simulated annealing terminates when the temperature is very low (near 

zero). If this cooling has been sufficiently slow, the system then has a high 

probability of being in a low energy state — hopefully the global energy 

minimum[29]. 

    We let Ni denote the set of nodes connected with non-zero weights to node i. In a 

fully connected net, Ni would include the complete set of N −1 remaining nodes. 

Further, we let Rand[0, 1) denote a randomly selected positive real number less 

than 1. With this notation, the pseudocode for the randomized or stochastic 

simulated annealing algorithm presented in page 355 by Duda/Hart/stork [29]: 

Stochastic simulated annealing algorithm 

1  begin initialize T(k), kmax, si(1), wij for i, j = 1, . . . , N 

2        k ← 0 

3        do k ← k + 1 

4           do select node i randomly; suppose its state is si 

5               Ea ←−½ ∑
Ni

j wijsisj 

6               Eb ←−Ea 

7               if Eb < Ea 

8                  then si ←−si 

9                     else if e
−(E

b
−E

a 
)  / T(k)

 > Rand[0, 1) 

10                        then si ←−si 

11          until all nodes polled several times 

12     until k = kmax or stopping criterion met 

13   return E, si, for i = 1, . . . , N 

14  end 

3- Characteristics of the SA algorithm 

SA optimization algorithm is based on the concept of annealing in metallurgy, a 

technique involving heating and controlled cooling of a material. At first, bounds 

for the parameters to be optimized are imposed, and an initial model is generated 

accordingly. By analogy with the annealing physical process, each step of the SA 

replaces the current solution by a random ―nearby‖ solution, chosen with a 

probability that depends on the cost function values and on a global parameter 

referred to as Temperature. The latter is decreased during the process following a 
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predefined cooling scheme. The dependency is such that the current solution 

changes almost randomly when the temperature is large, but as the temperature 

goes to zero solutions with lower cost are favored[7]. Some of the characteristics 

discussed in this section are: 1) Temperature, 2) Temperature initial value, 3) 

Stopping criterion, 4) Temperature decrease, 5) Markov chain. These 

characteristics are briefly discussed below[16]: 

Temperature: It is a control parameter that is sufficiently high, in order to skip 

high level gates of energy and sufficiently low to be attracted to the deepest 

minimum. The variation law of temperature is also important in order to test a 

maximum number of configurations and therefore to find the global minimum. 

Temperature initial value: In [16], T0 must be chosen so that the acceptance 

probability of the worst configuration would be equal to Pr = 80% after the 

maximal increase of the cost function ∆g+ is fixed by the user. T0 is obtained by 

the following expression:      

    T0 = ∆g+ / ln (Pr)                                                              →  ( 5  ) 

       

The following formula is also used in [16] to compute T0: 

   T0 = r
*
. max ∆g  such that r >> 1 , r ~ 10                           → ( 6  )      

 

In these two expressions, it is too difficult to compute or estimate the value of   

∆g+ and   max ∆g for a real big dimension problem. 

A third formula proposed that T0 should be selected so that system transitions are 

all accepted at the beginning of the research algorithm. That means: 

    exp( - ∆g / T0 ) ~ 1                                                           →  ( 7  )    

Stopping criterion:  The temperature decrease is stopped: 

 By fixing the number of Tk variations for which the algorithm is run 

 When two consecutive configurations are identical. 

 When the temperature Tk is less than a given fraction of T0 : 

  Tk  < Tratio with Tratio = 10
-6

 for example.                              → ( 8 ) 

Temperature decrease: the temperature change from Tk  to   Tk+1 is determined by 

static stability detection. The search is realized by iterating the Markov chain, 

which is generally configurations number tested at Tk . 

Markov chain: The Markov chain is the set of finite random states composed of 

the probabilities set associated with every configuration visited at temperature Tk. 

When Tk is constant, the probability is homogeneous. If the transition number tends 
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towards the infinite, the most probable state appears very often, we obtain the 

statistic stability at this temperature. 

Finally, we conclude that: Like in other meta-heuristic, the convergence and 

efficiency of simulated annealing algorithm depend on [16]:  

 A good choice of the neighborhood function. 

 Method tram diversity. 

 A good choice of algorithm parameters. 

 The search space size. 

4- The Annealing  Schedules 

Annealing is an operation in metal processing[15]. Metal is heated up very strongly 

and then cooled slowly to get a very pure crystal structure with minimum energy so 

that the number of fractures and irregularities becomes minimal. First, the high 

temperature accelerates the movement of the particles. During the cooling time the 

particles can find an optimal place within the crystal structure. While the 

temperature is lowered the particles subsequently lose the energy they were 

supplied with in the first stage of the process. Because of a thermodynamic, 

temperature-dependent random component some of them can reach a higher energy 

level compared to their previous energy level. These local energy fluctuations 

allow particles to leave local minima and reach a state of lower energy [8]. 

    In metallurgy[7] and material science, annealing is a heat treatment of a material 

with the goal of altering some its properties like its hardness. Metal crystals have 

small defects like dislocations of ions which weaken the overall structure. By 

heating the metal, the energy of the ions is increased and, thus, their diffusion rate 

is increased. Then, the dislocations can be destroyed and the structure of the crystal 

is reformed as the material cools down and approaches its equilibrium state. When 

annealing a metal, the initial temperature must not be too low and the cooling must 

be done sufficiently slowly so as to avoid the system getting stuck in a meta-stable, 

non-crystalline, state representing a local minimum of energy.   

    In physics, the method for allowing a system such as many magnets or atoms in 

an alloy to find a low-energy configuration is based on annealing[26]. In physical 

annealing the system is heated, thereby conferring randomness to each component 

(magnet). As a result, each variable can temporarily assume a value that is 

energetically unfavorable and the full system explores configurations that have 

high energy. Annealing proceeds by gradually lowering the temperature of the 

system — ultimately toward zero and thus no randomness — so as to allow the 

system to relax into a low-energy configuration. Such annealing is effective 

because even at moderately high temperatures, the system slightly favors regions in 
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the configuration space that are overall lower in energy, and hence are more likely 

to contain the global minimum. As the temperature is lowered, the system has 

increased probability of finding the optimum configuration [29]. 

    The act of annealing a metal so that it adopts the state of minimum energy can be 

thought of as a minimizing optimization problem, and as such it is interesting to 

use a similar technique for computational minimization. It is appealing to call the 

function of computational optimization using simulated annealing  minimizing the 

energy. 

     Simulated annealing is a relatively straight forward algorithm which includes 

metropolis Monte Caro method[17]. The metropolis Monte Carlo algorithm is well 

suited for simulated annealing, since only energetically feasible states will be 

sampled at any given temperature. The simulated annealing algorithm is therefore a 

metropolis Monte Caro simulation that starts at a high temperature. The 

temperature is slowly reduced so that the search space becomes smaller for the 

metropolis simulation, and when the temperature is low enough the system will 

hopefully have settled into the most favorable state [8]. 

     SA algorithm makes use of a number of parameters. The values of these 

parameters must be finely tuned; otherwise, inferior results are obtained frequently. 

The most important issue is the initialization of the temperature and the 

determination of the rate at which it should decrease [3]. On the other hand, setting 

the parameters of the SA-based algorithm determines the generation of the new 

solution. The precise rate of cooling is an essential part of SA as it determines if 

performance. A high cooling rate leads to poor results because of lack of enough 

representative states, while a low cooling rate requires high computation time.. 

First we show the general annealing method, then, the most interesting components 

of the annealing schedules. 

4.1 General annealing method 

Given a parameterized function of temperature in the following form 

 T(t) = (t),                                                             →  ( 9  ) 

Where constants ci are the parameters being sought, and fi(t) functions are arbitrary 

continuous functions. 

The derivative of equation (9) is expressed as: 

  = ,                                                        → (10 ) 
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In order to determine all parameters, preconditions must be set, such as 

T(t = tj ) = Tj ,  j = 0,1,2,…, n – 1                                        → (  11 ) 

Where Tj is an arbitrary temperature value. Note that all Tj values are 

recommended to fall between Tmax and Tmin . 

For simplicity, vector abbreviations are used. Let vector t = {T0, T1, T2, ….., Tn-1} 

denote all the temperature values set by boundary conditions in (11). Let c = {c0, 

c1,…, cn-1} denote the parameter vector, and let F = {fi(tj)} be the matrix of 

function values at t0,t1,t2,…,tn-1. 

Parameters can be determined by solving the following linear equation system: 

   T = Fc                                                                              →  ( 12 ) 

Thus if F can be inverted and F
-1

 denotes the inverse 

 c = F
-1

 t .                                                                            → (  13  ) 

Equation (10) is to be used to get an iterative annealing function: 

T(t = 0) = Tmax, 

T(tk+1) = T(tk)+                                            → ( 14 )  

Equation (14) gives the general schedule model. 

4.2 The Annealing Schedules 

The following choices must be made for any implementation of SA and they 

constitute the annealing schedule: the initial value of temperature (T), the cooling 

schedule, the number of iterations to be performed at each temperature, and the 

stopping criterion to terminate the algorithm. 

4.2.1 Initial value of temperature (T) 

Initial temperature is chosen such that it can capture the entire solution space. One 

choice is a very high initial temperature as it increases the solution space. 

However, at a high initial temperature, SA performs a large number of iterations, 

which may be without giving better results. Therefore, the initial temperature is 

chosen by experimentation depending upon the nature of the problem. The range of 

change, ∆ f0 in the value of the objective function with different moves is 

determined. The initial value of temperature should be considerably larger than the 

largest ∆ f0 encountered. One of the methods to select the initial temperature based 

on the initial acceptance ratio χ0 , and the average increase in the objective function 

∆ f0 can be given by: 

 T = -                                                                          → ( 15  ) 
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Where χ0 is defined as the number of accepted bad moves divided by the number of 

attempted bad moves. Another method is defining χ0 as the number of accepted 

moves divided by the number of attempted moves. 

4.2.2 Cooling schedule  

Cooling schedule determines the functional form of the change in temperature 

required in SA[21]. The earliest annealing schedules have been based on the 

analogy with physical annealing. Therefore, they set initial temperature high 

enough to accept all transitions, which means heating up substances till all the 

molecules are randomly arranged in the liquid. A proportional temperature is used, 

that is, T(i + 1) = α T(i), where α is a constant known as the cooling factor and it 

varies from 0.80 to 0.99. Finally, the temperature becomes very small and it does 

not search any smaller energy level. This is called the frozen state[27]. 

   Three important cooling schedules are: logarithmic, Cauchy, and exponential. SA 

converges to the global minimum of the cost function if the temperature change is 

governed by a logarithmic schedule in which the temperature T(i) is given by T(i) 

= T0/log i. This schedule requires the move to be drawn from a Gaussian 

distribution. A faster schedule is the Cauchy schedule in which T(i) = T0 / i. This 

schedule converges to the global minimum when moves are drawn from a Cauchy 

distribution. It is sometimes called ‗fast simulated annealing‘[25]. The fastest 

schedule is the exponential or geometric schedule in which T(i) = T0/exp(- Ci) 

where C is constant[27]. 

   A proportional temperature cooling schedule does not lead to equilibrium at a 

low temperature. Therefore, there is a need for a small number of transitions to be 

sufficient to reach the thermal equilibrium. However, recently few annealing 

schedules use information about the cost function obtained during the annealing 

run itself. Such a schedule is called an adaptive cooling schedule. An adaptive 

cooling schedule tries to keep the annealing temperature close to the equilibrium as 

well as reducing the number of transitions to reach equilibrium. It adjusts the rate 

of temperature decrease based on the past history of the run[27]. One of the 

adaptive cooling schedules uses the following formula:  

Ti+1 = Ti –                                                             →   ( 16  ) 
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Where  is the variance of the objective function at equilibrium and   is given 

by 

 =  Ti                                                       → ( 17 ) 

Where  is an estimated maximum value of the objective function. 

A second cooling schedule uses the following expression: 

Ti+1 =                                                                  →  (18 ) 

Where is a small real number. 

A third cooling schedule uses: 

Ti+1 = Ti exp ( -                                                       →  ( 19 ) 

And a fourth cooling schedule uses: 

Ti+1 = Ti (1 - Ti   )                                                      →  ( 20 ) 

Where   is a quality factor and  is the standard deviation of the 

temperature. 

    Other cooling schedules make a more direct appeal to the theoretical results on 

asymptotic convergence: An annealing schedule where there is only a single 

iteration at each temperature. A heuristic argument to derive a temperature function 

is of the form: 

 Ti+1 =                                                                         →  ( 22 ) 

Where B is a constant. 

 

4.2.3 Number of iterations 

The number of iterations at each temperature is chosen so that the system is 

sufficiently close to the stationary distribution at that temperature which is known 

as ‗quasi-equilibrium‘. Enough number of iterations at each temperature should be 

performed if temperature is decreased periodically. If lessthe number of iterations 

performed is too small, not all represented states will be searched and the algorithm 

will not be able to reach the global optimum. The value of the number of iterations 

depends on the nature of the problem[27]. 
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4.2.4 Stopping criterion 

Various stopping criteria have been developed with time. Here are a few examples: 

(1) Both the total number of iterations and the number of iterations at each 

temperature are given. This criterion leads to longer computation time without 

much update in f and sometimes it may lead to a local minimum due to an 

insufficient number of iterations. The number of iterations used by an algorithm 

depends on the complexity of a problem, which may not be known beforehand. (2) 

A minimum value of temperature and the number of iterations to move at each 

temperature are  given. This idea relies on the fact that the chance of improvement 

in a solution is rare once the temperature is close to zero. At very low temperature, 

moves will be trapped in the neighbourhood of the current solution. (3) Both the 

number of iterations to move at each temperature and a predefined number of 

iterations to get a better solution are given[27]. 

     

5- Simulation Results  

Before we analyze and compare the most famous annealing schedules used in the 

SA algorithm, we state the following points: 

1. SA method resembles the cooling process of molten metals through 

annealing. 

2. At high temperature, the atoms in the molten metal can move freely with 

respect to each other but as the temperature is reduced, the movement of 

atoms gets restricted. 

3. The atoms start to get ordered and finally form crystals having the 

minimum possible energy. 

4. The formation of a crystal mainly depends on the cooling rate. 

5. If the temperature is reduced at a very fast rate, the crystalline state may 

not be achieved at all; instead the system may end up in a polycrystalline 

state, which has higher energy level  than the crystalline state. 

6. Therefore, in order to achieve the absolute minimum energy state, the 

temperature needs to be reduced at a low rate[19]. 

Annealing schedule is an essential part of SA as it determines the performance of 

the SA algorithm. In this paper, we investigate many of the parameters settings and 

annealing schedules to enhance the performance of this algorithm. These are shown 

below: 
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1- T(k) = α  T(k – 1)                  where α < 1                                         → ( S1)  

Experience has shown that α should be between 0.8 and 0.99, with better 

results being found in the higher end of the range. Of course, the higher the 

value of α, the longer it will take to decrement the temperature to the 

stopping criterion. 

 

2- T(k) = (1 –α) T(k – 1) , 0 < α < 1                                                      →  (S2) 

It is a linear annealing function which is the simplest form of the 

polynomial annealing functions interpolated between the points determined 

by the start temperature at the beginning of the annealing process, the 

ending temperature which at the end of the process, the maximum 

temperature, and the minimum temperature. Note that equations (S2) and 

(S1) are both linear functions and that both depend on the choice of α. 

 

3-  T(k) = T(0) / k                                                                                    → (S3) 

This is known as the Cauchy annealing. The Cauchy schedule is a faster 

schedule in which equation (S3) converges to the global minimum when 

moves are drawn from a Cauchy distribution. It is sometimes called ‗fast 

simulated annealing‘. It was noted that the Cauchy distribution has a 

―fatter‖ tail than the Gaussian form of the Boltzmann distribution, 

permitting easier access to test the local minima in the search for the 

desired global minimum. 

  

4-  T(k) = T(0) / ln(k + 1)                                                                        → (S4) 

This is known as Boltzmann annealing (BA). It has the credit for being the 

first simulated annealing which is generally given to a Monte Carlo 

importance-sampling technique for doing large-dimensional path integrals 

arising in statistical physics problems. This method was generalized to fit 

non-convex cost functions arising in a variety of problems. 

 

5-  T(k) = T(0) / log(1 + k)                                                                      → (S5) 

This is known as the logarithmic annealing schedule. Using this schedule 

SA converges to the global minimum of the cost function if temperature 

change is governed by a logarithmic schedule in which the temperature 
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T(k) at step k is given by equation (S5). This schedule requires the move to 

be drawn from a Gaussian distribution. 

 

6. T(k) = T(0) / exp(k)                                                                            → (S6) 

This is known as the exponential or geometric annealing schedule. This 

schedule is the fastest schedule as shown in the results. There is no 

rigorous proof of the convergence of this schedule to the global optimum 

although good heuristic arguments for its convergence have been made for 

a system in which annealing state variables are bounded. 

 

All the simulated data are performed on the same data sets and under the same 

circumstances. Figure (1) shows a comparison between the six schedules taking the 

iterations shown in the figure. The fast schedule to converge is (S6). (S3) comes 

second. The third and fourth schedules to converge are (S1) and (S2). Their relative 

arrangement depends on the choice of the value α. The following schedule is (S4) 

and the slowest one is (S5).      

 

 

Figure(1): comparing the six schedules for the iterations shown. 
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Figure(2) shows a comparison between the temperature in all the six schedules in 

the first ten iterations. A great variation among the cooling schedules occurs during 

the first three iterations. After that a natural movement occurs in each schedule. 

Schedule (S5) has the largest temperature at the first and tenth iterations. On the 

other hand, schedule (S6) has the lowest temperature at the first and tenth iterations. 

 

Figure(2) : comparing the temperature for each schedule to the first ten iterations. 

 

In figure (3), we can see that the annealing process of the schedule (S5) is better 

than the annealing process of the schedule (S4). (S3) Follows these two schedules. 

This is followed by  the schedules (S1) and (S2).  The last one is the annealing 

schedule (S6). On the other hand the schedule (S6) is the fastest one. (S1) and (S2) 

represent a fast annealing following (S6). These are followed by (S3). The 

annealing schedule (S4) is slower . The slowest annealing schedule is (S5).      
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            Figure(3): Comparing the temperature schedule for the last ten iterations. 

 

The fastest annealing schedule (S6) is called Quenching schedule, and the 

simulated annealing in this case is called simulated quenching. In order to 

guarantee an optimal solution a simulated annealing algorithm is preferred than a 

simulated quenching algorithm. But for some problems, we can do this with a 

faster annealing schedule, and in many cases when we do not need an optimal 

solution, a faster annealing may be more efficient. In natural cooling (or annealing), 

we can ―find‖ the lowest energy state-crystallization. However, if we hasten the 

process by rapid cooling as shown in schedule (S6), the lowest energy state of 

amorphous will not occur. 

    Figure(4) shows the temperature difference between the last iteration and the 

previous one. The figure indicates that the difference in schedule (S5) is more than 

the difference in schedule (S4). Following these is (S1) and (S2) which are nearly 

on the same level. The temperature difference in schedule (S3) is even lower. The 

difference between the temperatures of the last two iterations of schedule (S6) 

reaches zero 
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          Figure(4): the temperature difference between the last two iterations 

 

Figure (5) shows the temperature difference (the behavior of the cooling schedule) 

between the first two iterations as follows: 

In schedule (S1), the temperature difference = 450 – 405 = 45. 

In schedule (S2), the temperature difference = 450 – 405 = 45. 

In schedule (S3), the temperature difference = 500 – 250 = 250. 

In schedule (S4), the temperature difference = 500 – 315 = 185. 

In schedule (S5), the temperature difference = 721 – 455 = 26 6.  

In schedule (S6), the temperature difference = 184 – 67 = 117. 

These values indicate that the cooling schedule (S5) cools fastest in the beginning 

of the annealing process.. Schedule (5) is followed  by schedule (S3) then (S4) then 

(S6). Finally (S1) and (S2) are on the same level. 
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Figure(5): the temperature difference between the first and the second iterations for 

the six schedules. 

 

Figure(6) shows the behavior of the minimum energy reached by the six schedules. 

The minimum energy of schedule (S1) is the largest. The minimum energy of 

schedule (S3) is the lowest. Table (2) shows the numerical values of the minimum 

energy of all six schedules. 

 

                      Figure(6) the Minimum Energy for the six Schedules. 
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Table (1) shows the temperature for each schedule at iteration (1) and at iteration 

(14) when  the temperature reached 0 in schedule (S6).. In this table two 

temperature values are considered. In iteration (1) the value of the temperature 

using schedule (S5) = 721.348 while the starting temperature (atiteration zero) = 

500. This means that an uphill occurs in this iteration. The second consideration is 

the temperature = 0.000  for schedule (S6), at iteration (14). No improvement can 

happen after that.  

 

Table( 1 ):  The first iteration‘s temperature until temperature = 0.000 for S6. 

IT S1 S2 S3 S4 S5 S6 

1 450.000 450.000 500.000 500.000 721.348 183.940 

14 114.384 114.384 35.714 127.979 184.635 0.000 

 

Table( 2 ): The minimum energy for the six schedules 

Schedule S1 S2 S3 S4 S5 S6 

M.E 3.92476 3.498277 2.671506 3.505392 3.528039 2.766086 

 

Table(3) shows the temperature average and standard deviation of all iterations.  

Schedule (S6) has the lowest average temperature. This means that a fastest 

annealing occurs (simulated quenching). Schedule (S5) has the largest average 

temperature. This means that the annealing process is better than the others. 

 

Table( 3 ): The temperature average and standard deviation for all iterations of the 

six schedules. 

Schedule S1 S2 S3 S4 S5 S6 

Average 83.052 83.052 42.365 125.875 181.599 5.389 

SD 126.491 126.4907 97.69085 83.85988 105.75236 71.71881 

 

Table(4) shows the range between the temperatures in iteration (1) and in iteration 

(54). The lowest range is in schedule (S6). In fact it is lower than the value 

mentioned in the table. The reason is that from iteration (14) to the last iteration, 

the temperature equals zero. On the other hand, the largest range is associated with 

schedule (S5). 



Journal of the ACS, Vol. 4, May 2010 

 

 

 

 

 

 

 

 

 

34 

 

Table( 4 ): The temperature range from the first iteration to the last one. 

 S1 S2 S3 S4 S5 S6 

IT1 450.000 450.000 500.000 500.000 721.348 183.940 

IT54 1.691 1.691 9.259 86.485 124.771 0.000 

Range 448.309 448.309 490.741 413.515 596.576 183.940 

 

This paper gives a comparison of the performance of simulated annealing. The 

analytical results among different annealing schedules are illustrated as follows:  

1. Dynamics analysis. Simulated annealing is a generic probabilistic meta-

heuristic for the global optimization problem of applied mathematics, namely 

locating a good approximation to the global minimum of a given function in a 

large search space. It is often used when the search space is discrete. The 

annealing process is divided into two stages: High temperature and low 

temperature. 

High temperature: This stage is a classic thermodynamics process. According 

to metropolis criteria, the algorithm accepts the worse solution at high 

probability. The algorithm‘s dynamics behavior is a random movement in the 

search space. In this stage metropolis criteria act as the driving force of the 

algorithm movement. We can use classic thermodynamics and Brownian 

motion theory to describe this stage. We call it classic dynamics stage. 

Low temperature: This stage is a quantum mechanics process. The Metropolis 

criteria restricts the solution free movement in the search space, because it 

accepts the worse solution at very low probability. Crystal lattice vibration 

theory could describe the algorithm‘s dynamics behavior at low temperature. In 

this stage energy becomes the main factor of the system. We call it quantum 

dynamics stage. At high temperature the algorithm system can be analyzed by 

classic thermodynamics; at low temperature the algorithm system can be 

analyzed by quantum mechanics. 

From Figures(1,2,3) and Tables(1,4), we find that the exponential or geometric 

annealing schedule (S6) is the fastest to make the simulated annealing 

algorithm change from a classic thermodynamics process to a quantum 

mechanics process. Immediately following that schedule is the Cauchy 

annealing schedule (S3) although there is a great difference between the initial 

temperatures of the two schedules. The linear annealing schedules represented 

in (S1 and S2) come in the third stage. The Boltzmann annealing schedule (S4) 

comes fourth. The logarithmic annealing schedule (S5) is the last one in this 
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regard. The rate of change from classic thermodynamics to the quantum 

mechanics is also different from schedule to schedule. For example, as shown 

in Figure(1), the rate of change (behavior) of the temperature from iteration 1 

to iteration 10 differs from the behavior of temperature from iteration 10 to 

iteration 20 for the stated schedules. S2 tends to decrease from a certain 

temperature to a lower one more rapidly than S4. All the schedules tend to 

reach a lower temperature than S4 and S5 starting from iteration 20 towards 

iteration 50. Figure(3) shows that all schedules oriented the simulated 

annealing algorithm to the quantum mechanics process within a certain limit.  

2. Mathematical analysis. Mathematical analysis studies functions and their 

generalizations. Functional analysis is the part of modern mathematical 

analysis in which the basic purpose is to study functions. In its most general 

form such a study falls into three parts: 1) the introduction and study of 

infinite-dimensional spaces, 2) the study of the simplest functions, and 3) the 

study of general functions. The paper discusses the general functions that 

illustrate the general annealing schedules in section (4.1). The specific 

annealing schedules are shown in sections (4.2) and (5). 

3. Statistical analysis. Statistical manipulation is often necessary to order, define 

and/or organize raw data. Basic statistical analysis involves computing the 

mean and standard deviation. The mean is the average of all the values 

obtained. The Standard deviation is a widely used measurement of variability 

or diversity used in statistics and probability theory. It shows how much 

variation or ―dispersion‖ there is from the ―average‖. A low standard deviation 

indicates that the data points tend to be very close to the mean, whereas a high 

standard deviation indicates that the data are spread out over a large range of 

values. In addition to expressing the variability of a population, standard 

deviation is commonly used to measure confidence in statistical conclusions. In 

science, researchers commonly report the standard deviation of experimental 

data, and only effects that fall far outside the range of standard deviation are 

considered statistically significant. 

Table(3) shows the mean value and standard deviation of the temperature for 

all the mentioned schedules. In this table S6 (the exponential or geometric 

annealing schedule) has the minimum mean value for the iterations required. 

This means that the process of annealing takes minimum number of iterations 

which indicates that this is the fastest annealing schedule (simulated quenching 

occurs). Also S6 has the lowest standard deviation. Following S6,  S3 (the 
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Chauchy annealing schedule) has the second smallest mean value and standard 

deviation. The 3
rd

 is the linear annealing schedules represented by S1 and S2 

although their standard deviation is the highest which means that the data is 

spread out over a large range of values. Following these schedules we get tothe 

mean and standard deviation of the Boltzmann annealing schedule which are 

less then counterparts for the logarithmic annealing schedule. 

4. A quantitative study is presented for the typical behavior of the simulated 

annealing algorithm based on the mentioned annealing schedules. The study is 

based on the analysis of numerical results obtained by applying the algorithm 

on a simulated data and are shown through the figures and tables in this 

section. 

5. Each annealing schedule is derived from a certain statistical distribution that 

has different characteristics. The details of these characteristics are beyond the 

scope of this paper. 

6- Discussion and Conclusions  

For optimization problems where derivatives of the cost function are not available, 

stochastic methods like Simulated Annealing can be applied[15]. SA-based 

algorithms have attractive and unique features when compared with other 

optimization techniques. Firstly, a solution does not get trapped in a local minimum 

or maximum by sometimes accepting even the worse move. Secondly, 

configuration decisions proceed in a logical manner[27]. SA can narrow the field 

of search and speed up the rate of convergence continually in the optimization 

process. The true strength of SA lies in its ability to statistically deliver a true 

global optimization.     

  In this paper different versions of annealing schedules are used to optimize the 

performance of the algorithm. From the study, we state the following conclusions: 

1. The exponential annealing schedule is the fastest to converge. It provides 

the fastest annealing schedule. It is followed by the Cauchy annealing 

schedule, which also provides a fast simulated annealing. The linear 

schedules follow. The Boltzmann annealing schedule comes fifth. The  

logarithmic annealing schedule is the slowest to converge  

2. The annealing process of the logarithmic annealing schedule is better than 

the annealing process of the Boltzman annealing which is better than the 

annealing process of the Cauchy annealing schedule. Following the above  

comes the linear annealing schedules. The exponential annealing schedule 

has the worst annealing process. 
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3. At the beginning, the logarithmic annealing schedule has the fastest 

cooling schedule. It is followed by the Cauchy annealing schedule, then 

the Boltzman annealing schedule. The linear schedules are the slowest at 

the beginning of the process. 

4. The minimum energy of the Cauchy annealing schedule is the lowest. It is 

followed by the exponential annealing schedule, then by the linear 

annealing, then by the Boltzman annealing schedule, and finally by the 

logarithmic annealing schedule. 

5. The temperature average and standard deviation of the annealing process 

for all the annealing schedules are calculated indicating that the 

exponential annealing schedule has the lowest mean value, the lowest 

standard deviation, and the smallest temperature range. 

     Using simulated annealing it has been proven that it is possible to converge 

to the best solution. 
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